# Instructional Space Project Request
## 2019-21 Biennium

<table>
<thead>
<tr>
<th>Agency</th>
<th>Institution</th>
<th>Building No.</th>
<th>Building Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Wisconsin</td>
<td>La Crosse</td>
<td>285-0E-0010</td>
<td>Mitchell Hall</td>
</tr>
</tbody>
</table>

### Project Title

**Mitchell Hall Lab Renovations**

### Project No.: 19G3P

### Project Intent

This project provides investigation and research, pre-design, and design services in accordance with the DFDM Consultant Policy & Procedure Manual to expand and enhance the athletic training instructional space in Mitchell Hall by remodeling the existing area and capturing additional contiguous space and remodeling it for use, create an instructional space in Mitchell Hall that is dedicated for Exercise and Sports Science and Health Education Health Promotions, and expand and enhance the Human Performance Lab instructional space in Mitchell Hall. The lab spaces will be evaluated to identify deficiencies, develop design solution alternatives, and recommend appropriate corrective measures.

### Project Description

The project scope for the Athletic Training Lab will include complete demolition of all interior walls within Rooms 18 and 19, demolition of all floor, wall, and ceiling finishes, demolition of all existing light fixtures and HVAC distribution ductwork, grilles, etc. within this same space and in rooms 8 and 10 (the existing training center). The area will then be reconstructed as one large space with new ceiling, lighting, casework, and sinks along the perimeter walls. Wall and floor finishes will be designed to accommodate the type of activity that will occur in the room. Data connections and additional access to electrical power will be installed throughout the new area and two small offices will be constructed within the space.

Since the new space is currently a locker room, there is minimal HVAC supply and no air conditioning. As the space will be converted to instructional space, it is anticipated that a new air handling system, including air conditioning, will need to be designed and installed as part of the project. The intent is to replace the existing HVAC system with a new system that can provide adequate service to the new space. This system should be designed to accept future chilled water supply for cooling once the utility work is completed to the building.

The project scope for the Exercise and Sport Science Lab will include complete demolition of all floor, wall, and ceiling finishes, all existing light fixtures, and HVAC distribution ductwork, grilles, etc. within the existing Wrestling Room. The intent is to perform a complete demolition of the area down to the building’s structure. The area will then be reconstructed into a large classroom/laboratory space with new ceiling, lighting, wall, and floor finishes and instructional technology along with data connections and power throughout.

The intent is to replace the existing HVAC system with a new system that can provide adequate service to new space. The HVAC system should be designed to accept future chilled water supply for cooling once the utility work is completed to the building. Due to the proximity of the Dance Studio and Kinetics Lab, the new HVAC system should be designed to serve those spaces as well. The current Dance Studio and Wrestling Room are not air conditioned, and the Kinetics Lab is served by an old, once-through domestic water cooling system that is old, undersized, and incredibly wasteful and inefficient.

In summary, the university desires to convert the existing Wrestling Room to a large open classroom/lab space with finishes and lighting appropriate for the instructional and laboratory activities related to human performance that occur in the space. The A/E consultant will work with the university to examine the feasibility and building code issues associated with some of the revisions described above. The A/E consultant will also work with the university to develop the optimal layout of the space within which activities will occur and to specify lighting and finishes that will provide the best performance and aesthetic appearance.

The project scope for the Human Performance Lab will include complete demolition of all interior walls including the existing corridor walls, all floor, wall, and ceiling finishes, all existing light fixtures, and HVAC distribution ductwork, grilles, etc. The intent is to perform a complete demolition of the area down to the building’s structure. The area will then be reconstructed as one large classroom/laboratory space with new ceiling, lighting, wall, and floor finishes and instructional technology along with data connections and power throughout the new area. A small office and work room to process lab result data will be constructed within the space, and a small shower and changing area will also be included in the new classroom/lab area.
The intent is to remove or relocate the restrooms that are now located in the center of the space; eliminate the existing corridor that runs along the south edge of the project location; and integrate that area into the final instructional space. However, the A/E consultant will need to advise the university regarding the feasibility and building code compliance of these revisions. An existing treadmill currently located in Room 225 is depressed into the structural slab of the floor, and the desire is to relocate that to a position that functions well with the overall design of the entire area. The A/E consultant will be required to advise the university regarding the feasibility and budget impact of recreating this condition in a different location within the space. The intent is to replace the existing HVAC system with a new system that can provide adequate service to new space. This system should be designed to accept future chilled water supply for cooling once the utility work is completed to the building. Any work with cadaver parts utilizes localized exhaust “snorkels,” and this practice will continue until the cadaver activities are relocated.

In summary, the university desires to convert the entire area shown on the attached project location plans, including the existing corridor C231, to one large open classroom/lab space with finishes and lighting appropriate for the instructional and laboratory activities related to human performance that occur in the space. Some small separate rooms, as described above, will be constructed within the space and instructional technology will be installed. The A/E consultant will work with the university to examine the feasibility and building code issues associated with some of the revisions described above. The A/E consultant will also work with the university to develop the optimal layout of the space within which activities will occur in and to specify lighting and finishes that will provide the best performance and aesthetic appearance.

Project Justification

The UW-La Crosse athletic training program was the first curriculum program recognized by the National Athletic Trainers Association (NATA), and it has been fully accredited by the Commission on Accreditation of Allied Health Educational Programs (CAAHEP) since 1980. The program leads to a Bachelor of Science in Athletic Training, and courses within the program are required for other majors within the College of Science and Health.

The Athletic Training Center is utilized for the following activities:

- serves 75 students in the athletic training education program who utilize the Center for classes on a weekly basis
- serves the following courses - ESS 181, 182, 281, 286, 287, 378, 379, 386, 387, 481, 484, 486 (avg. of 145 students in the Fall and 125 in Spring)
- serves as the primary clinical education placement for all athletic training students
- serves as the location for Intercollegiate Athletics Athletic Training Services 6+ hours per day
- serves as the location for athletic training services staff to provide health care for 600 student athletes across 21 athletic teams
- serves as the location for athletic training services staff to provide an average of 45,000 treatments annually
- serves as the location for athletic training services for 42 weeks annually
- serves an average of 135 student/athletes daily for health care services, peak patient count is an average of 166 daily
- serves as the location for a high school camp is held annually for approximately 35 students
- serves as the primary clinical facility for the WIAA State Track and Field Championships annually

The existing athletic training instructional space is in the lower level of Mitchell Hall and it was created when the building was constructed in 1965. Other than some minor remodeling, the space is essentially the same size and in the same format as when it was constructed over 45 years ago. However, the athletic training program itself has evolved significantly since then. It is now a robust academic program in which students learn preventative methods for avoiding injury, evaluating and assessing muscular skeletal injuries, implementation of therapeutic modalities, rehabilitation methods, and emergent care and first aid. The program has outgrown its space, and implementation of this project will allow additional space to be dedicated to this instruction.

The number of students who are pursuing degrees in the life sciences and also seeking courses needed for degrees in the various allied health fields, continues to grow dramatically. This, in turn, results in an ever increasing demand for access to curriculum within the programs in the College of Science and Health. The space referenced in this project is the only area that many of these programs, both graduate and undergraduate, have to accommodate the delivery of classroom and lab instruction as well as faculty and student research. Based on enrollment trends and the general increase in STEM and health related industries, the College of Science and Health desires to reconstruct the space into an area that will provide
the flexibility to support a more diverse array of instructional methods and activities. The dedicated larger space will also accommodate larger numbers of students participating in the instructional and lab activities, and it will better support interactive instruction and quick transitions from lecture based learning to laboratory based learning.

The use of the spaces for the 2016-17 academic year included:
• The Lab supports an extensive battery (614) of fitness testing for the Exercise Science major.
• The lab also supports an average of 26 graduate and undergraduate research projects.
• The lab serves as a demonstration teaching station for 5 classes per semester, serving the needs of about 450 students.
• The lab has 4-6 classes specifically scheduled in the lab weekly (depending on semester and schedule) serving 70 students per week.
• There are currently 6 active faculty utilizing the space for research.
• The lab also serves the community by providing high school students with tours and presentations, there are six high schools consistently utilizing this service.

Along with the configuration of the space, the existing infrastructure also hinders instruction. This portion of the building was constructed in 1970 and other than some minor in-house remodeling performed by university staff, no significant upgrades to the space have occurred since it was constructed. As such, the majority of the infrastructure is in excess of 40 years old and is beyond its expected life. In addition, there is no educational technology available in the space, and the current room configurations make it difficult to install technology.

### Project Budget

<table>
<thead>
<tr>
<th>Project Budget</th>
<th>Funding Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost:</td>
<td>General Fund Supported Borrowing</td>
</tr>
<tr>
<td></td>
<td>Institutional Funds (GPR)</td>
</tr>
<tr>
<td>A/E Design Fees:</td>
<td>Institutional Funds (PR)</td>
</tr>
<tr>
<td>Other Fees:</td>
<td>Gifts</td>
</tr>
<tr>
<td>DFD Mgmt Fees:</td>
<td>Grants</td>
</tr>
<tr>
<td>Contingency:</td>
<td>Other</td>
</tr>
<tr>
<td>Movable Equipment:</td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL:</strong></td>
<td><strong>TOTAL:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>6,037,500</strong></td>
</tr>
<tr>
<td></td>
<td><strong>6,037,500</strong></td>
</tr>
</tbody>
</table>

### Consultant Requirements

Consultants should have specific expertise and experience in the design and coordination of instructional laboratory design, along with typical architectural, structural, and MEP systems as part of a design team. Work includes site surveys, acquiring field data, and verifying as-built conditions to assure accurate development of design and bidding documents, and production of necessary design and bidding documents. Consultants should indicate specific projects from past experience (including size, cost, and completion date) in their letter of interest and when known, include proposed consulting partners and specialty consultants.

The consultant will verify project scope, schedule, and budget estimates, and recommend modifications as required to complete the specified project intent. The consultant will prepare a pre-design document to establish an appropriate project scope, budget, and schedule prior to the university seeking authority to construct from the Board of Regents and State Building Commission.

☑ An audio-visual consultant is required.

### Project Schedule

<table>
<thead>
<tr>
<th>Project Schedule</th>
<th>Project Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bid Opening: 02/2021</td>
<td>Contact Name: Scott Schumacher</td>
</tr>
<tr>
<td>Construction Start: 05/2021</td>
<td>Email: sschumacher@uw腋纹edua</td>
</tr>
<tr>
<td>Substantial Completion: 10/2021</td>
<td>Telephone: 608-785-8916</td>
</tr>
</tbody>
</table>
Project Considerations

1. Are hazardous materials involved? If yes, what materials are involved and how will they be handled?
   Required hazardous materials abatement has been included in the estimated project schedule and project budget. Comprehensive environmental survey inventory data is available on Wisconsin's Asbestos & Lead Management System (WALMS) <http://walms.doa.state.wi.us/>.
   Y N

2. Will the project impact the utility systems in the building and cause disruptions? If yes, to what extent?
   N/A
   Y N

3. Will the project impact the heating plant, primary electrical system, or utility capacities supplying the building, and/or within the building? If yes, to what extent?
   N/A
   Y N

4. Will the construction work be limited to a particular season or window of opportunity? If yes, explain the limitations and provide proposed resolution.
   The work will need to be done during the summer months.
   Y N